
Functional Evaluation for Printed Circuit Board 
Based on Surface Mount Technology Process Data 

Jiayu Li 
Department of Automation 

University of Science and Technology of China 
Hefei, China 

jyli_xxy@mail.ustc.edu.cn 
 
 

Binkun Liu 
Department of Automation 

University of Science and Technology of China 
Hefei, China 

liubink@mail.ustc.edu.cn 
 

Yunbo Zhao * 
Department of Automation 

University of Science and Technology of China 
Institute of Artificial Intelligence 

Hefei Comprehensive National Science Center 
Hefei, China 

* Corresponding author: ybzhao@ustc.edu.cn 
 
 
 
 
 

Abstract—Functional test strategy adjustment can save testing 
time and testing costs for companies. Since focusing on testing 
possible defective products can save a lot of testing time, a natural 
idea is to evaluate the functionality of the printed circuit boards 
(PCBs) based on surface mount technology (SMT) process data. 
Considering the important impact of electrical pathways on PCB 
functional evaluation, we propose a generative adversarial 
network method based on circuit layout (CL-GAN). Specifically, 
the generator is mainly composed of electrical node attribute 
feature extraction module and electrical connection feature 
extraction module. These modules are used to model the quality 
attributes of key nodes in PCB electrical pathways and model 
electrical connection relationships. The discriminator is trained to 
perform PCB functional evaluation. Experimental results 
demonstrate that CL-GAN achieves a 33.34% improvement in F1 
score, along with a 96.64% reduction in testing time and a 64.77% 
decrease of total cost. 
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I.  INTRODUCTION 
Functional test as the last process of printed circuit board 

(PCB) production, is an important part of the PCB production 
process. Functional testing simulates the operating environment 
of the PCB through the test machine, making it work in various 
design states, so as to check the performance of the PCB under 
various design states.  Through efficient functional testing, PCB 
defects can be avoided from assembly into electronic devices, 
thus reducing repair costs. 

The fixed test strategy mainly used in factories suffers from 
the excessive test time and test cost, and it is necessary to be 
optimized. Typically, fixed test strategies categorize functional 
test items into mandatory and optional test items. For 
mandatory test items, all PCBs must be tested; for optional test 
items, PCBs will be randomly selected for testing according to 
a predetermined ratio. For example, a typical laptop 
manufacturer can off-line a batch of PCBs in a dozen seconds, 
and each PCB takes about tens of seconds for mandatory tests 
and a few minutes for optional tests. To prevent PCB stack-up, 

a large number of test machines (more than $10000 each) must 
be added to test many PCBs at the same time. So fixed test 
strategy will result in a significant cost.  

Academic research on test strategy adjustment is lacking 
because the details of functional testing are trade secrets. Our 
research team cooperate with a laptop manufacturer to complete 
the mathematical modeling of the general framework of 
functional testing for the first time [1], and propose test item 
selection based on yield prediction [2], functional test cost 
reduction based on fault tree analysis and binary optimization 
[3], and other solutions. These solutions achieve the purpose of 
reducing test time and reducing functional test costs by 
adjusting the test ratio of the selected test items. However, these 
solutions require the collection of a large amount of historical 
functional test data. Therefore, they are only applicable to the 
case of mass production of PCBs, and the test items of the test 
machine need to be frequently set according to the selected test 
items. The PCB production process is highly coupled, and each 
production step may have an impact on the PCB function. 
Therefore, a natural idea is to evaluate the PCB function 
through surface mount technology (SMT) process data, and 
focus on testing PCBs that may have defects. This method does 
not require the collection of a large amount of PCB functional 
test data, nor does it require the modification of the test machine 
settings, and can save more testing time. 

Due to the small number of defective PCBs and the 
extremely unbalanced ratio between defective and good 
products, PCB function evaluation mainly relies on anomaly 
detection technology [4][5]. When existing anomaly detection 
algorithms are applied to our problem, they usually analyze the 
relationship between attributes from PCB process data and 
ignore the electrical pathways of the PCB, making it difficult to 
detect potential electrical faults, and thus the evaluation of PCB 
functions may be inaccurate. Since the realization of PCB 
functions depends on electronic components and corresponding 
electrical pathways, any electrical faults may cause PCB 
functional defects. Therefore, electrical pathways have an 
important impact on PCB functional evaluation. 
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(a) 

 
(b) 

Figure 1. (a) Generator structure of CL-GAN. (b) Discriminator structure of CL-GAN 

To model the electrical pathways, we propose a GAN 
method based on circuit layout: CL-GAN, which is used to 
evaluate the PCB function. GAN can be used to model the 
production data distribution of well-functioning PCBs, thereby 
effectively identifying outliers about this data distribution—
defective PCBs. First, we design two modules in the generator 
part. The electrical node attribute feature extraction module is 
used to extract the features between the quality attributes of the 
key nodes in the PCB electrical pathways. For the electrical 
connection feature extraction module, we design a mask 
mechanism that reflects the electrical connection relationship 
based on the PCB circuit layout, so that the model can model 
the circuit structure of the PCB. Then, we fuse the outputs of 
the two modules to ensure that the generated data is more 
realistic. Next, we train the discriminator. Finally, the trained 
discriminator is used to evaluate the PCB function, achieving 
an accuracy of 97.99% and an F1 score of 0.6667. Compared 
with the cooperative factory approach, we can save 96.64% of 
testing time and 64.77% of total cost. 

The main contributions of this paper are: 

• To model electrical pathways, we propose CL-GAN. The 
two modules of the generator extract electrical node 
attribute features and electrical connection features 
respectively. Our method achieves the best results after 
experimental verification. 

• To model the electrical connection relationships, we 
propose a mask mechanism based on the PCB circuit 
layout. This mechanism can reflect the actual electrical 
connection relationships, allowing the model to 
accurately model the circuit structure of the PCB. 

• To model the quality attributes of key nodes in PCB 
electrical pathways, we design an electrical node 
attribute feature extraction module, which can effectively 
capture the association between quality attributes and 
electrical functions. 

II. METHOD 
The overall architecture of CL-GAN is shown in Figure 1. 

Due to the effectiveness of multi-head attention in capturing 
long-range dependencies and outstanding performance, we use 
multi-head attention as the core component to design CL-GAN. 

A. Electrical Node Attribute Feature Extraction Module 
In order to better model the quality attributes of key nodes in 

PCB electrical pathways, we design an electrical node attribute 
feature extraction module. This module uses Transformer to 
extract attribute features of electrical nodes. With its powerful 
attention mechanism, it can effectively capture the complex 
relationship between various attributes in the data. The 
calculation process of the multi-head attention mechanism can 
be expressed as: 𝑄, 𝐾, 𝑉 = 𝑋𝑊ொ, 𝑋𝑊௄, 𝑋𝑊௏ (1)

Attention = softmax ቆ𝑄𝐾்ඥ𝑑௞ ቇ 𝑉 (2)ℎ𝑒𝑎𝑑௛ = Attentionሺ𝑄௛, 𝐾௛, 𝑉௛ሻ (3)

MultiHeadሺ𝑋ሻ = Concatሺℎ𝑒𝑎𝑑ଵ, … ℎ𝑒𝑎𝑑௛ሻ𝑊௢ (4)

 

where 𝑊ொ, 𝑊௄, 𝑊௏, 𝑊ை are learnable parameters, Q is the 
query matrix, K is the key matrix, V is the value matrix, and ඥ𝑑௞ 
is the scaling factor. 

 

Figure 2. Part of PCB circuit layout. When the pin is clicked, it turns blue, and 
the pins connected by the circuit turn purple. 

B. Electrical Connection Feature Extraction Module 
When modeling the electrical connection relationship of 

PCB, directly using the multi-head attention mechanism may fail 
to capture the complex component interconnection relationships 
in the circuit, making it impossible to model the actual circuit 
structure. Therefore, we design a mask mechanism that reflects 
the electrical connection relationship based on the circuit layout 
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that reflects the node position and circuit structure. Part of PCB 
circuit layout is shown in Figure 2. This mechanism highlights 
the circuit structure by shielding the attention calculation 
between nodes that do not have circuit connections, ensuring that 
the model can accurately model the circuit structure when 
processing data, focusing on the electrical connection 
relationship between nodes. Specifically, we obtain the circuit 
structure of the PCB based on the circuit layout. Then, based on 
the circuit structure, we retain the attention between nodes that 
have circuit connections. In this way, nodes that have attention 
connections with each other are circuit connected and have 
actual physical meanings. The mask matrix 𝐴 can be obtained 
from the following formula: 

𝐴௜௝ = ቄ1  ሺ𝑖, 𝑗ሻ ∈  𝕂0     others  ሺ5ሻ 

where 𝑖, 𝑗 refer to solder joint 𝑖, 𝑗, 𝕂 is a set storing pairs of 
solder joints that are circuit-connected. 

At this point, to calculate attention, equation (2) should be 
redefined as: 

Attention = softmax ቆ𝑄𝐾்ඥ𝑑௞ ቇ 𝑉 ⊙ 𝐴 ሺ6ሻ 

The electrical connection relationship can be reflected by 
using masks designed based on circuit layout. Such masks 
provide a clue for the model to guide it to focus on the truly 
important circuit structure, thereby improving the model's ability 
to understand PCB process data. Moreover, the introduction of 
the mask mechanism also reduces computing resources and 
effectively reduces the amount of information that the model 
needs to process, which not only shortens the training time, but 
also reduces memory usage and improves operating efficiency. 

C. Fusion Module 
Fusing the outputs of the two modules allows the generator 

to not only capture the complex relationships between the 
various attributes of the process data, but also model the circuit 
structure of the PCB. This significantly improves the 
authenticity of the generated data. The output FSoutput  of the 
fusion module is as follows: 

FSoutput = 𝛼 ⋅ ENAoutput + 𝛽 ⋅ ECoutput ሺ7ሻ 

where ENAoutput represents the output of the electrical node 
attribute feature extraction module, ECoutput represents the 
output of the electrical connection feature extraction module, 𝛼 
and  𝛽 are hyperparameters. 

D. Discriminator Structure 
The discriminator structure is shown in Figure 1.b, which is 

mainly composed of CNN. The convolution layer is responsible 
for extracting local features. This enables the discriminator to 
effectively capture the multi-level features of the input data and 
extract subtle differences. After being processed by the Sigmod, 
the functional evaluation score is output to effectively 
distinguish between real samples and fake samples. As the 
training process proceeds, the generator continuously adjusts 

parameters to generate data that is closer to reality, while the 
discriminator continuously improves its discrimination ability. 

During the function evaluation process, the discriminator 
will give higher scores to well-functioning PCB data that often 
appear during the training process; while for unseen PCB 
defective data, because its features are quite different from the 
well-functioning data in the training set, the discriminator will 
give lower scores when dealing with such data, thereby 
achieving PCB function evaluation. 

E. Loss Function 
The loss functions for the generator and discriminator are as 

follows: 

BCEሺ𝑦, 𝑦ො ሻ =  − 1𝑁 ෍ሺ𝑦௜ logሺ𝑦ො௜ሻ + ሺ1 − 𝑦௜ሻ logሺ1 − 𝑦ො௜ሻሻே
௜ୀଵ (8)𝐿஽ = BCE൫𝑦, 𝐷ሺ𝑥ሻ൯ + BCE ቀ𝑦෤, 𝐷൫𝐺ሺ𝑥ሻ൯ቁ (9)𝐿ீ = BCE ቀ𝑦, 𝐷൫𝐺ሺ𝑥ሻ൯ቁ (10)

 

where BCEሺ𝑦, 𝑦ො ሻ is a binary cross entropy loss function that 
measures the difference between the predicted value 𝑦ො and the 
actual value 𝑦, 𝑥  represents the input data, 𝑦 = 1 denotes the 
corresponding labels, 𝑦෤ = 0 indicates the labels of the generated 
data, 𝐷ሺ𝑥ሻ represents the output of the discriminator with x as 
input, 𝐺ሺ𝑥ሻ represents the generated data of the generator with x 
as input, 𝐿஽  represents the loss of the discriminator, and 𝐿ீ 
represents the loss of the generator. 

F. Functional Evaluation 
We employ the trained discriminator for function evaluation. 

Specifically, the production process data of a PCB is input into 
the trained discriminator to obtain a functional evaluation score. 
Subsequently, a threshold 𝛿 is established, and the PCB function 
evaluation result can be derived from the following formula: 

𝑅𝑒𝑠𝑢𝑙𝑡 = ൜ 0, functional evaluation score ≥ 𝛿1, functional evaluation score < 𝛿 ሺ11ሻ 

where 𝑅𝑒𝑠𝑢𝑙𝑡 = 0 indicates that the PCB is evaluated as a 
good product, while 𝑅𝑒𝑠𝑢𝑙𝑡 = 1 signifies that the PCB is 
assessed as a defective product. 

III. EXPERIMENTS 
To validate the performance of proposed CL-GAN, we 

conduct experiments using real PCB data collected from a 
cooperating factory's automated production line, specifically 
from the solder paste inspection and functional testing machines. 
According to expert knowledge, solder paste printing has a 
significant impact on the functionality and reliability of PCBs. 
Therefore, we use the core solder paste inspection data to 
conduct functional evaluation. The data collection period span 
one week, during which a total of 449 PCBs with optional test 
items are collected. Among these, 445 PCBs exhibit satisfactory 
functionality, while 4 are identified as defective. 
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A. Data preprocessing and evaluation metrics 
We select 300 well-functioning PCB data as the training set 

and the rest as the test set. Each data is normalized by column. 
The dimension of each data is [3152, 9], where 3152 represents 
the number of solder joints on a PCB and 9 refers to the number 
of attributes of each solder joint. To evaluate the performance of 
CL-GAN, we use two widely recognized indicators: accuracy 
and F1 score. Based on the formula for computational cost 
provided by [1], we propose a formula for computational cost 
difference ∆𝐶, as shown below: ∆𝐶 = 𝑁 ∙ 𝐶் − ሺ𝑛 ∙ 𝐶் + ∆𝐶ோ ∙ 𝑘ሻ ሺ12ሻ 

This formula indicates the cost that our proposed solution 
can save compared with the original solution. N refers to the 
number of PCBs in the test set, 𝐶் is the cost of testing a PCB 
with optional items, n refers to the number of PCBs that need to 
be tested after functional evaluation, ∆𝐶ோ  refers to the cost 
difference between repairing a faulty PCB as a finished laptop 
and repairing it as a PCB, and k refers to the number of defective 
PCBs that are missed by our solution. 

B. Experimental Results 
Our proposed CL-GAN is compared with One-Class SVM 

[6], REPEN [7], DIF [8], SLAD [9] and a conventional GAN 
[10] composed of a three-layer fully connected network. The 
experimental results are shown in table 1. Although the 
conventional GAN has a simple model structure, it performs 
better than One-Class SVM under imbalanced conditions, 
demonstrating GAN's ability to effectively capture underlying 
patterns in data. REPEN, DIF, and SLAD are anomaly detection 
methods specifically designed for tabular data. However, due to 
their neglect of the electrical pathways in PCBs, their detection 
performance is suboptimal. 

Additionally, the results show that CL-GAN achieve 
excellent detection performance on the real PCB dataset, with 
the best accuracy and F1 score. This is because CL-GAN's 
various components efficiently extract electrical pathways 
features, leading to more diverse and realistic sample generation. 
This is a key reason for its superiority over other methods on 
imbalanced datasets. 

Our method determines that 5 PCBs needed to be tested. 
Compared with the cooperative factory that needs to test 149 
PCBs, we can save 96.64% of the testing time. At the same time, 
since 3 of the 5 PCBs are actually defective, one defective PCB 
was missed. Therefore n=5, k=1. Based on the relevant data in 
[1] and [3], we calculate that 𝐶் is 0.4 and ∆𝐶ோ is 19. Then we 
can calculate ∆𝐶 = 38.6 , which means 64.77% cost saving. 

TABLE I. Result of Experiments 

Model Accuracy F1 
One-class SVM 

REPEN 
DIF 

SLAD 

0.7114 
0.9128 
0.9530 
0.9732 

0.1224 
0.3158 
0.4615 

0.5 
GAN 0.8725 0.24 

CL-GAN 0.9799 0.6667 

IV. CONCLUSION 
In this paper, we propose a GAN method based on circuit 

layout: CL-GAN for PCB functional evaluation. 

(1) To model the electrical connection relationships, we 
propose a mask mechanism based on circuit layout that reflects 
the PCB electrical connection relationships. The generator of our 
model is mainly composed of an electrical node attribute feature 
extraction module and an electrical connection feature extraction 
module, which makes the generated data more realistic, thereby 
guiding the discriminator to better improve its identification 
ability and achieve accurate functional evaluation. 

(2) Experimental results show that our model achieves a 
33.34% improvement in F1 score. Moreover, CL-GAN can save 
96.64% of testing time and 64.77% of the total cost, providing 
an important reference for the factory we cooperate with to 
adjust the PCB functional test strategy. 

In the future, we will also collect more PCB process data of 
different models to further improve our algorithm and obtain 
better results.  
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